
MODULE II

• IDEA: Primitive operations- Key expansions-
One round, Odd round, Even Round- Inverse
keys for decryption. AES: Basic Structure-
Primitive operation- Inverse Cipher- Key
Expansion, Rounds, Inverse Rounds. Stream
Cipher –RC4.

IDEA

• International Data Encryption Algorithm

• Symmetric block cipher

• 128 bit key

• Encrypt data in blocks of 64 bits

Cryptographic Strength

• Block Length

• Key Length

• Confusion

• Diffusion

IDEA Encryption

• plaintext – 64 bits

• Key – 128 bits

• 8 rounds followed by a final transformation
function

• Each of the rounds makes use of six 16 bit
subkeys, where as the final transformation
uses four subkeys, for a total of 52 sub keys

Diffusion

• Provided by the basic building block of
algorithm known as Multiplication Addition
Structure.

• Takes as inputs two 16 bit values derived from
plaintext & two 16 bit subkeys derived from
the key.

• Produces two 16-bit outputs

• This structure is repeated 8 times in algorithm

• Provides very effective diffusion

Multiplication Addition (MA)
Structure

Details of a Single Round- Odd
Round

Details of a Single Round- Odd
Round (1)

• Round begins with a transformation

• That combines four input subblocks with four
subkeys

• Using the addition & multiplication operations

• Four output blocks produce by this
transformation are then combined using the
XOR operation to form two 16 bit blocks that
are input to the MA structure.

Details of a Single Round- Odd
Round (2)

• MA structure also takes two subkeys as input

• Combines these inputs to produce two 16-bit
outputs

• Finally the 4 output blocks from the upper
transformation are combined with the two
output blocks of MA structure using XOR to
produce the 4 output blocks for this round.

• Second & third inputs are interchanged to
produce the second & third output (w12 &
w13)

Even Round

• Subsequent rounds have the same structure
but with different subkey & plaintext derived
inputs

Ninth stage – output
Transformation Stage

Ninth stage – output
Transformation Stage

• Second & third inputs are interchanged before
being applied to the operational units

Subkey Generation

• 52, 16 bit subkeys are generated from 128-bit
encryption key

• First eight subkeys, labeled Z1,Z2,……….,Z8 are taken
directly from the key

• Z1 being equal to the first 16 bits

• Z2 being equal to the next 16 bits

• Then a circular left shift of 25 bit positions is applied
to the key & the next 8 subkeys are extracted

• This procedure is repeated untill all 52 subkeys are
generated.

AES

• Advanced Encryption Standard (AES)

• designed by Rijndael

• symmetric block cipher.

• plaintext block size of 128 bits, or 16 bytes.

• Key length can be 16, 24, or32 bytes (128,
192, or 256 bits)

• The algorithm is referred to as AES-128, AES-
192, orAES-256, depending on the key length.

AES

• Input to the encryption and decryption
algorithms is a single 128-bit block.

• This block is depicted as a 4 * 4 square matrix
of bytes.

• This block is copied into the State array, which
is modified at each stage of encryption or
decryption.

• After the final stage, State is copied to an
output matrix.

Key & Expanded Key

• Similarly, the key is depicted as a square
matrix of bytes.

• key is then expanded into an array of key
schedule words.

• Each word is four bytes, and the total key
schedule is 44 words for the 128-bit key.

• The ordering of bytes within a matrix is by
column.

• So, for example, the first four bytes of a 128-
bit plaintext input to the encryption cipher
occupy the first column of the in matrix,

• the second four bytes occupy the second
column, and so on.

AES Encryption Process

The first N - 1 rounds consist of four
distinct transformation functions:

• SubBytes

• ShiftRows

• MixColumns

• AddRoundKey

• The final round contains only three
transformations

• Initial single transformation (AddRoundKey)
before the first round, which can be
considered as Round 0.

Encryption & Decryption

Overall AES structure (1)

• This structure is not a Feistel structure.

• In the classic Feistel structure, half of the data
block is used to modify the other half of the
data block and then the halves are swapped.

• AES instead processes the entire data block as
a single matrix during each round using
substitutions and permutation.

Overall AES structure (2)

• The key that is provided as input is expanded
into an array of forty-four 32-bit words, w[i].

• Four distinct words (128 bits) serve as a round
key for each round.

• Four different stages are used, one of
permutation and three of substitution:

Overall AES structure (3)

• Substitute bytes: Uses an S-box to perform a
byte-by-byte substitution of the block

• ShiftRows: A simple permutation

• MixColumns: A substitution that makes use of
arithmetic over GF(28)

• AddRoundKey: A simple bitwise XOR of the
current block with a portion of the expanded
key.

Overall AES structure (3)

• The structure is quite simple.

• For both encryption and decryption, the
cipher begins with an AddRoundKey stage,
followed by nine rounds that each includes all
four stages, followed by a tenth round of three
stages.

Overall AES structure (3)

• Only the AddRoundKey stage makes use of the
key.

• For this reason, the cipher begins and ends
with an AddRoundKey stage.

• Any other stage, applied at the beginning or
end, is reversible without knowledge of the
key and so would add no security.

Overall AES structure (3)

• The AddRoundKey stage is, in effect, a form of
Vernam cipher and by itself would not be
formidable.

• The other three stages together provide
confusion,diffusion, and nonlinearity, but by
themselves would provide no security because
they do not use the key.

AES: PRIMITIVE OPERATIONS

• Substitute Bytes Transformation

• Forward and Inverse Transformations

• The forward substitute byte transformation,
called SubBytes, is a simple

• table lookup as shown in Figure below.

Substitute Bytes
a simple substitution of each byte

uses one table of 16 x 16 bytes containing a
permutation of all 256, 8-bit values

each byte of state is replaced by byte indexed by row
(left 4-bits) & column (right 4-bits)

eg. byte {95} is replaced by byte in row 9 column 5

which has value {2A}

S-box constructed using defined transformation of values in
GF(28)

Galois Field- GF(p), where p is a prime number, is simply
the ring of integers modulo p.
designed to be resistant to all known attacks

https://en.wikipedia.org/wiki/Ring_(algebra)
https://en.wikipedia.org/wiki/Modular_arithmetic

Substitute Bytes

Shift Rows
a circular byte shift in each

1st row is unchanged
2nd row does 1 byte circular shift to left
3rd row does 2 byte circular shift to left
4th row does 3 byte circular shift to left

decrypt inverts using shifts to right
since state is processed by columns, this step
permutes bytes between the columns

Shift Rows

Mix Columns

each column is processed separately
each byte is replaced by a value
dependent on all 4 bytes in the column
effectively a matrix multiplication in GF(28)
using prime poly m(x) =x8+x4+x3+x+1

Mix Columns

Add Round Key

XOR state with 128-bits of the round key
again processed by column (though
effectively a series of byte operations)
inverse for decryption identical

since XOR own inverse, with reversed keys
designed to be as simple as possible

a form of Vernam cipher on expanded key
requires other stages for complexity / security

Add Round Key

AES:Key Expansion

• AES key expansion algorithm takes as input a
four-word (16-byte) key & produces a linear
array of 44 words (176 bytes)

• The key is copied into the first four words of
the expanded key.

• Remainder of the expanded key is filled in four
words at a time.

• Each added word w[i]depends on the
immediately preceding word, w[i - 1]

Function g

1. RotWord performs a one-byte circular left
shift on a word. This means that an input
word [B0, B1, B2, B3] is transformed into [B1,
B2, B3, B0].

2. SubWord performs a byte substitution on
each byte of its input word, using the S-box.

3. The result of steps 1 and 2 is XORed with a
round constant, Rcon[j].

• The round constant is a word in which the
three right most bytes are always 0.

• Thus, the effect of an XOR of a word with Rcon
is to only perform an XOR on the leftmost byte
of the word.

Encryption Round

• An encryption round has the structure

SubBytes

ShiftRows

MixColumns

AddRoundKey.

Decryption Round

• InvShiftRows

• InvSubBytes

• AddRoundKey

• InvMixColumns

• Thus, the first two stages of the decryption
rounds need to be interchanged, and the
second two stages of the decryption rounds
need to be interchanged.

Interchanging InvShift Rows and
InvSubBytes

• InvShiftRows affects the sequence of bytes in
State but does not alter byte contents and
does not depend on byte contents to perform
its transformation.

• For a given State Si,

InvShiftRows [InvSubBytes (Si)] =
InvSubBytes [InvShiftRows (Si)]

Interchanging AddRoundKey and
InvMixColumns

• The transformations AddRoundKey and
InvMixColumns do not alter the sequence of
bytes in State.

• If the key can be viewed as a sequence of
words, then both AddRoundKey and
InvMixColumns operate on State one column
at a time.

Stream Ciphers

• process message bit by bit (as a stream)

• have a pseudo random keystream

• combined (XOR) with plaintext bit by bit

• randomness of stream key completely destroys
statistically properties in message
– Ci = Mi XOR StreamKeyi

• but must never reuse stream key
– otherwise can recover messages

Stream Cipher Structure

Stream Cipher Properties

some design considerations are:

long period with no repetitions

statistically random

depends on large enough key

large linear complexity

properly designed, can be as secure as a block
cipher with same size key

but usually simpler & faster

RC4

Stream Cipher

Ron Rivest design, simple but effective

variable key size, byte-oriented stream cipher

widely used (web SSL/TLS, wireless WEP/WPA)

key forms random permutation of all 8-bit values

uses that permutation to scramble input information
processed a byte at a time

RC4 Key Schedule

starts with an array S of numbers: 0..255

A temporary vector T is also created

If the length of key K is 256 bytes ,then K is
transferred to T

For a key of length ‘ keylen’ bytes, the first
keylen elements of T are copied from K & then
K is repeated as many times as necessary to fill
out T.

Initialization

for i = 0 to 255 do

S[i] = i;

T[i] = K[i mod keylen];

Initial permutation of S

j = 0;

for i = 0 to 255 do

j = (j + S[i] + T[i]) (mod 256)

swap (S[i], S[j])

RC4 Encryption (1)

• encryption continues shuffling array values

• Stream Generation
i,j = 0;

While (true)

i = (i + 1) mod 256

j = (j + S[i]) mod 256

swap(S[i], S[j])

t = (S[i] + S[j]) mod 256

K = S[t];

RC4 Encryption (2)

• To encrypt , XOR the value k with the next
byte of plain text.

• To decrypt , XOR the value k with the next
byte of cipher text

RC4 Overview

RC4 Security

claimed secure against known attacks

have some analysis, none practical

result is very non-linear

since RC4 is a stream cipher, must never reuse
a key

RC4

• Divided into 2 parts

(i) Key Scheduling Algorithm (KSA)

(ii) Pseudo Random Generation Algorithm

(PRGA)

• Run PRGA on the KSA output to generate Key
stream

• XOR the data with key stream

